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Abstract— Depth-image-based-rendering (DIBR) techniques
are significant for 3D video applications, e.g., 3D television
and free viewpoint video (FVV). Unfortunately, the DIBR-
synthesized image suffers from various distortions, which induce
an annoying viewing experience for the entire FVV. Proposing
a quality evaluator for DIBR-synthesized images is fundamental
for the design of perceptual friendly FVV systems. Since the
associated reference image is usually not accessible, full-reference
(FR) methods cannot be directly applied for quality evalua-
tion of the synthesized image. In addition, most traditional
no-reference (NR) methods fail to effectively measure the specifi-
cally DIBR-related distortions. In this paper, we propose a novel
NR quality evaluation method accounting for two categories of
DIBR-related distortions, i.e., geometric distortions and sharp-
ness. First, the disoccluded regions, as one of the most obvious
geometric distortions, are captured by analyzing local similarity.
Then, another typical geometric distortion (i.e., stretching) is
detected and measured by calculating the similarity between
it and its equal-size adjacent region. Second, considering the
property of scale invariance, the global sharpness is measured as
the distance between the distorted image and its downsampled
version. Finally, the perceptual quality is estimated by linearly
pooling the scores of two geometric distortions and sharpness
together. Experimental results verify the superiority of the
proposed method over the prevailing FR and NR metrics. More
specifically, it is superior to all competing methods except APT
in terms of effectiveness, but greatly outmatches APT in terms
of implementation time.

Index Terms— Perceptual quality, image quality assessment
(IQA), view synthesis, DIBR, geometric distortion, sharpness.

I. INTRODUCTION

THREE-DIMENSIONAL (3D) videos have received
considerable attention and gained rapidly in recent

decades due to their strong immersive perception [1]–[4].
As one important application of 3D videos, free viewpoint
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video (FVV) tends to technically mature and bids fair to
the developmental direction of the next-generation video
technologies [5]. Generally, the content in FVV is recorded
by multiple cameras at different viewpoints and displayed
by special technology. Viewers can view the 3D scene from
multiple viewpoints when perceiving FVVs. With the increas-
ing number of views, it inevitably aggravates the task of
storage and transmission [6]. To solve this issue, Multi-view-
Video-plus-Depth (MVD) technique has been designed for 3D
representation and can be used as the data format of FVV [7].
Using MVD, limited textural views and their associated depth
maps are required to be coded and transmitted. The remain-
ing virtual views can be synthesized from decoded textural
views and depth maps via the Depth-Image-Based-Rendering
(DIBR) algorithm on the receiver side [8], [9]. Unfortunately,
DIBR is not a flawless technology and produces distortions
on the synthesized views. A low-quality view may induce
an annoying perceptual experience in the entire FVV, but
existing solutions are powerless in accurately estimating those
distortions [10]. As a preliminary study of evaluating quality
of FVVs, effectively and efficiently estimate the perceptual
quality of DIBR-synthesized views has attracted increasing
attention from scholars [10]–[15].

Over the past decades, extensive discussions have
been made on the perceptual image quality assessment
(IQA) [16]–[21]. Subjective evaluation, as the most reliable
measurement, directly reflects intuitive subjective feelings.
However, it fails in large-scale practical applications since it is
time-consuming and expensive. Actually, subjective evaluation
is usually treated as the ground truth of objective evaluation,
which can be generally divided into three categories. To be
specific, full-reference (FR) and reduced-reference (RR) meth-
ods respectively require entire and partial reference informa-
tion to estimate the quality of the distorted image. While,
no-reference (NR) methods do not require any reference
information.

To date, dozens of objective methods have been designed for
evaluating 2D images [19], [21]–[26]. However, as previously
revealed, they are incapable of solving the quality assess-
ment problem of DIBR-synthesized images [10], [12], [15].
Hence, specific methods for DIBR-synthesized images have
been developed as the demand for the development of FVVs
has increased. For example, Bosc et al. [12] conducted the
pioneer work that investigated the reason why traditional
IQA methods failed to evaluate DIBR-synthesized images and
appealed for the attention to designing new IQA solutions.
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Conze et al. [13] focused on DIBR-induced artifact detection
and provided an FR metric by extending an existing 2D IQA
metric. Sandić-Stanković et al. [27] first decomposed an image
into morphological wavelet subbands at multiple scales. Then,
the mean squared error (MSE) value was calculated in each
subband between the synthesized image and reference image.
Finally, the quality of the synthesized image was obtained by
pooling the MSE values across scales. Likewise, they also
improved the performance by replacing the morphological
wavelets with morphological pyramids [28]. Battisti et al. [14]
designed an FR metric via comparison of statistical features of
Haar wavelet subbands between the synthesized image and the
reference image. To ensure shifting-resilience, a registration
step was required before the feature comparison. Besides, con-
sidering that the observer was more sensitive to human-related
regions, a skin detection step was conducted to weight the final
quality score. Zhou et al. [29] proposed a novel FR metric
by detecting disoccluded regions and the overall quality was
estimated via a weighted pooling function. The performance
was further improved by combining global sharpness [15].
Assuming that edge information could well reflect distortions,
Zhou et al. [30] quantified the edge intensity and orientation
between the synthesized image and the reference image indi-
vidually. The image quality was estimated by pooling the two
components together.

To promote the development of this research area,
we propose a novel NR quality assessment algorithm
for DIBR-synthesized images in this paper. Specifically,
we mainly consider geometric distortions (i.e., the disoc-
cluded region and stretching) and sharpness. More specif-
ically, according to local characteristics of natural images,
disoccluded regions are first detected by comparing the rela-
tionships between the local pixel and its surrounding pixels.
Then, the stretching region is captured via threshold detection.
To quantify the impacts of stretching on the final performance,
we compute the similarity between the stretching region and
its equal-size adjacent region. Next, the global sharpness is
estimated by measuring the distance between the synthesized
image and its downsampled version. Finally, the image quality
is estimated via a linear pooling procedure of geometric
distortions and sharpness. Compared to those reference-based
methods, the proposed method does not require any ref-
erence information and may have potentials with broader
range of applications. Experimental results on IRCCyN/IVC
DIBR image database (developed by the Institut de Recherche
en Communications et Cyberntique de Nantes) [12] show
that the proposed method is consistent well with subjective
feelings and simultaneously balances the effectiveness and
implementation time. More concretely, it is superior to existing
mainstream IQA methods and is slightly inferior to APT in
terms of effectiveness. However, it costs less implementation
time and only requires less than hundredth of the time required
on APT.

The rest of this paper is organized as follows. Section II
introduces the related works and motivation of this paper.
In Section III, we describe the proposed method in detail.
Section IV presents the experimental protocol, results on
IRCCyN/IVC DIBR image database. Finally, the conclusion is

drawn in Section V. For the reader’s convenience, we present
the used abbreviations in the Appendix.

II. RELATED WORKS AND MOTIVATION

A. NR Image Quality Assessment Methods

In the literature, a great variety of mature NR IQA methods
have been designed for 2D images [17]. These methods are
capable of evaluating the commonly occurring distortions, like
blurriness/sharpness, blockiness and contrast change. Broadly
speaking, they can be classified into two categories. One is
the specific-purpose method, which is designed for evaluating
the specific distortion type mentioned above. For example,
Liu and Heynderickx [31] proposed an effective method for
measuring blockiness by considering the structural information
and visual masking effect. Wang et al. [32] extracted gradient
statistical properties and formed a blind blurriness evaluator
by utilizing an extreme learning machine. In [33], an NR
blurriness assessment method was introduced via analysis
of local texture. Gu et al. [34] considered multiple proper-
ties (e.g., naturalness, sharpness, brightness and colorfulness)
and built a regression module to evaluate image contrast.
Another category is the general-purpose method, which is
designed to simultaneously evaluate multiple distortion types.
Currently, most general-purpose methods are learning-based.
To be specific, they first extracted quality-sensitive features
(e.g., gradient, luminance, texture, entropy and regularity
change of natural scene statistics). Then, the quality predictor
was built by bridging the relationship between these features
and the quality scores via machine learning tools [35]–[38].
Although these methods have obtained reliable performance in
the quality assessment of 2D images, they fail or are unsuitable
for DIBR-synthesized images. Two reasons explain this phe-
nomenon. 1) The synthesized view suffers different distortions
compared to these common distortions (more details are given
in Section II-B), therefore, the aforementioned methods show
their inability. 2) Most of the aforementioned methods rely on
a sufficient dataset for training the prediction model. However,
due to the limited amount of data, it is unsuitable for training a
reliable model for the quality assessment of DIBR-synthesized
images.

Currently, the quality assessment of DIBR-synthesized
images is still in its infancy, and only a few attempts have
been made to blindly estimate their quality. Gu et al. [10]
conducted a pioneering work to blindly estimate the quality of
DIBR-synthesized images. In that approach, an autoregression
prediction model (named APT) was built to detect the geomet-
ric distortion, and then an optimized procedure was utilized
by taking the saliency map into account. Assuming that a
high-quality image and the synthesized image possessed dif-
ferent responses on morphological operations, Tian et al. [39]
proposed a morphological based approach (named NIQSV)
to detect the geometric distortion and consequently mea-
sure the image quality. Later, they extended NIQSV (to
NIQSV+) to further improve the performance by integrating
scores of NIQSV, stretching and black hole together [40].
These attempts are far from completely solving the quality
assessment problem of DIBR-synthesized images. On the one
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Fig. 1. Illustrations of the synthesized distortions: (a) reference view of (b)−(d), (b) object shifting, (c) disoccluded region, (d) stretching, (e) reference view
of (f), (f) blurry region, (g) reference view of (h), and (h) crumbling. In each figure, there may be multiple distortions, we highlight only the representative
distortion with a red rectangle.

hand, APT is computationally expensive although it has high
performance. On the other hand, both NIQSV and NIQSV+
leave a lag on effectiveness behind their high efficiency.
Therefore, large room remains open for researchers on either
balancing the effectiveness and efficiency or improving each
part individually/simultaneously.

B. Motivation

Different from common ones, DIBR-related distortions are
mainly generated during DIBR synthesis and exhibit diverse
appearances. Specifically, warping, as the first stage of DIBR
synthesis, aims to map the reference view to a 3D Euclid-
ean space with the supervision of depth information. Then,
the target view can be generated from the 3D Euclidean
space via an inverse mapping operation [8]. Unfortunately,
such an operation inevitably induces geometric displacements
in the form of the disoccluded regions. In general, a rendering
operation is subsequently required to restore these geometric
displacements. However, a blurry artifact may be produced
on the synthesized image when adopting imperfect rendering
algorithms. Meanwhile, stretching occurs on the left or right
side of the image since rendering algorithms may fail to work
on this region. Moreover, the quality of the depth informa-
tion also plays an important role in determining the final
appearance of the synthesized image. For instance, a simple
preprocessing operation (e.g., compression and filter) will
obviously affect the synthesized contents. For convenience,
we give an intuitive illustration in Fig. 1.

Fig. 1(a) is the local portion of one reference image in the
IRCCyN/IVC DIBR image database, while Fig. 1(b) - 1(d)
are its distorted versions. Specifically, Fig. 1(b) suffers from
object shifting distortion (as marked by the red rectangle,
the woman’s nose is squeezed), which is mainly induced
by error depth information. Fig. 1(c) shows a distorted
image that contains disoccluded regions. Generally, the dis-
occluded region is one of the most obvious distortion types
in the synthesized image and should be focused on during

quality assessment model construction. Stretching, as shown
in Fig. 1(d), is another typical distortion. Such distortion often
occurs on the left or right side of the image, where rendering
algorithms are powerless. Fig. 1(e) presents another refer-
ence image and its synthesized version suffered from blurry
region distortion is shown in Fig. 1(f). Theoretically, a blurry
region is generated during in-painting the disoccluded region
using imperfect rendering algorithms. Fig. 1(g), containing
the crumbing distortion, is the synthesized view of Fig. 1(h).
Generally, crumbing may occur along the object edge when
the depth map is under wavelet-based compression. Apart from
these distortions, other artifacts, such as flickering and slight
geometric distortion, may also be produced. It is clear that
all these distortion types are quite different from common
distortions, such as blockiness, noise, contrast change, etc.
This is why traditional methods designed for 2D images are
not proper for evaluating these synthesized distortions.

To effectively evaluate the quality of the synthesized image,
one must focus on detecting the aforementioned distortions
and find a suitable solution to quantify each distortion. More-
over, since the reference image of the DIBR-synthesized
image is not actually accessible, a reference-free method is
more favored and welcomed. In this paper, we propose an
effective and efficient NR quality assessment algorithm for
the synthesized image. The proposed method mainly considers
the typical distortions, i.e., disoccluded region, stretching and
global sharpness. Extensive experiments exhibit its effective-
ness and efficiency.

III. PROPOSED QUALITY ASSESSMENT SCHEME

In this section, we introduce the proposed method in detail.
More specifically, the proposed method treats the measure-
ment of the geometric distortion and global sharpness as the
key problem to be solved for evaluating the quality of the
synthesized image. The geometric distortion is measured by
two ways, i.e., disoccluded region evaluation and stretching
strength evaluation. Whereas, the global sharpness is evaluated
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Fig. 2. Framework of the proposed scheme.

via the analysis of image self-similarity. Fig. 2 systematically
depicts the framework of the proposed method.

A. Disoccluded Region Evaluation

Digital images are full of complex structures and textures
with strong correlations among pixels, meaning that one pixel
is quite akin to its adjacent pixels in a local region. Benefiting
from this, human beings can successfully recognize and com-
prehend image contents. During DIBR synthesis, the warping
operation is utilized and induces undesirable geometric dis-
tortion in the form of disoccluded regions. Fig. 3(a) gives an
intuitive comparison between disoccluded region and natural
image patches. For convenience, we respectively mark the
typical disoccluded region, smooth region, texture region and
edge region by red, green, blue and orange rectangles. Mean-
while, these rectangles are enlarged for better visualization.
It is clear that, as for natural patches (e.g., the green, blue and
orange regions), pixels in the local region contain intrinsic
regularity and form special patterns, like edge, texture, etc.
By contrast, pixels in the disoccluded region (i.e., the red
region) are the same and the associated region shows flat
appearance.

Based on these observations, we attempt to detect disoc-
cluded regions via the analysis of local image similarity. Such
similarity is estimated by analyzing the relationship between
one pixel and its adjacent pixels. Fig. 4 provides a brief
illustration about the analysis procedure. In the figure, the light
blue circle denotes the center pixel, while the remaining circles
represent its adjacent pixels. Here, we take eight adjacent
pixels as an example. For an adjacent pixel, the relationship
(e.g., the gray-level difference) between it and the center
pixel is calculated. This operation starts from the top circle
and is conducted in the clockwise direction. In each case,
we highlight the considered adjacent circle with a pink surface.
Overall, we can totally obtain eight relationships between the
center pixels and its adjacent pixels. The local similarity can
be reflected by integrating these relationships together. In pre-
vious studies of texture classification and face recognition,
LBP was widely verified and used because of its effective
ability to excavate local correlation [41]–[43]. We therefore
utilize LBP to measure the local correlation in this paper. It is
worth emphasizing that, although some works have employed
LBP in solving the IQA problem [35], [44]–[46], they have
intrinsic differences compared to this work. Actually, those

works directly took LBP as quality-sensitive features, which
were trained by a machine learning tool to generate the quality
evaluator. In contrast, the proposed method uses only the LBP
to detect the disoccluded region.

Revisiting Fig. 4, the relationship between the center pixel
nc and its i -th adjacent neighbor ni can be calculated by:

s(I (ni ), I (nc)) =
�

1, i f I (ni ) ≥ I (nc)

0, i f I (ni ) < I (nc)
(1)

where I (nc) denotes the gray value of center pixel, while I (ni ),
i = {0, 1, 2, 3, · · · , P-1} stands for the gray value of circularly
symmetric neighbor pixel. P is the number of surrounding
neighbors. Apparently, for one pixel, a total of P comparison
results are obtained by using Eq. (1). Then, these comparison
results can be encoded via binomial factor 2i according to
their locations:

�P =
P−1�
i=0

s(I (ni ), I (nc)) · 2i . (2)

By definition [43], LBP only possesses the gray invariance, yet
it is lack of good attributes for object transformations, i.e., the
rotation invariance. To expiate this, a rotation invariant uniform
LBP map (�riu2

P ) was designed and formally defined as:

�riu2
P =

⎧⎪⎪⎨
⎪⎪⎩

P−1�
i=0

s(I (ni ), I (nc)), i f μ(�P) ≤ 2

P + 1, otherwi se

(3)

where μ is calculated as the number of bitwise transitions.
It can be expressed as:

μ(�P) = �s(I (n0), I (nc)) − s(I (n P−1), I (nc))�

+
P−1�
i=1

�s(I (ni ), I (nc)) − s(I (ni−1), I (nc))�. (4)

According to Eqs. (1)−(4), we can totally obtain P +
2 different types of patterns from one uniform LBP map.
Obviously, the parameter P affects the characteristics of LBP
descriptor. In this work, we set P = 8 according to discussion
in Section IV-C. Besides, the distance between the centered
pixel and its surrounding pixels may also have a direct
influence on the detection results. With increasing the distance,
LBP will no longer reflect local similarity anymore. Therefore,
we set the distance as 1 since it, to the greatest extent, reflects
the local information.

Broadly speaking, LBP is able to clarify different natural
images or patches by analyzing textural information [41].
In reality, natural images or patches consist of various con-
tents and their histograms of LBP patterns are consequently
complex. In contrast, the disoccluded region has flat surface
and lacks regularity. Hence, LBP can be treated as an effective
tool for distinguishing natural image patches and the disoc-
cluded patches. To illustrate this, an intuitive example is given
in Fig. 3(b), where four sub-figures are involved. From the top
left to bottom right, these sub-figures are LBP histograms of
picture regions marked by the red, green, blue and orange
rectangles in Fig. 3(a), respectively. For better visualization,
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Fig. 3. Disoccluded region detection. (a) Comparison of disoccluded region and natural image patches. Typical patches are marked (and accordingly enlarged)
by colorful rectangles (i.e., red, green, blue and orange), which contain disoccluded region, smooth, texture and edge, respectively. (b) LBP histograms of
picture regions marked by the red, green, blue and orange rectangles. (c) Detection results. For better visualization, we inverse Dr values.

Fig. 4. Procedure of measuring relationship between one pixel and its
adjacent pixels.

the texts are also highlighted by the associated color according
to regions they represent. Considering Fig. 3(a) and Fig. 3(b)
together, we can derive some meaningful conclusions: 1) LBP
histograms of natural image patches are sufficiently complex
and vary based on image content, i.e., smooth, texture and
edge; whereas, 2) that of the disoccluded region is simple with
only one bin equaling to one. Such regularity is not difficult
to explain: all pixels in the disoccluded region have the same
gray value, and thus, for a pixel, its gray value always equals
to its neighbors. That is, all pixels in the disoccluded region
maintain the same LBP encoding format. According to the
above analysis, we have confidence that LBP can detect the
disoccluded region effectively.

After obtaining the LBP maps, the disoccluded region map
Dr can be obtained via a binary operation:

Dr =
�

0, i f �riu2
P = 8

1, otherwi se
, (5)

where value 0 indicates the disocculded region. To eliminate
some isolated small “noise”, we subsequently clean the LBP
map with the Gaussian filter. Moreover, given that some
non-disoccluded regions, such as sky and white wall, may
also possess bald appearance, we remove these regions via
a threshold. Specifically, one connected region in LBP map
is labeled as non-disoccluded region if its area is larger than
10% of the whole image. Fig. 3(c) shows the detection result of
Fig. 3(a) using the local similarity analysis mentioned above.
In Fig. 3(c) (as well as Fig. 5(b)), the white region has value 1,

while the black region has value 0. For better visualization,
we inverse Dr values obtained by Eq. (5) in Fig. 3(b). As can
be seen, the disoccluded region is well detected in the form
of white region.

After obtaining the disoccluded region map Dr , our next
concern is how to utilize it to estimate the image qual-
ity. In the literature, a vast majority of quality assessment
methods were designed based on the natural scene statis-
tics (NSS) model, which quantifies the distortion by analyz-
ing the corruption degree of NSS regularity. Unfortunately,
as discussed in reference [10], NSS model was incapable of
reliably evaluating the quality of DIBR-synthesized images.
Apart from NSS model, another well-proved thought is to
measure the similarity between the distorted image and its
reference image [19], [22], [47]. In this paper, we imitate the
benchmark work (SSIM) and define a quality evaluator for the
disoccluded region. Suppose that we have a reference image
and its disoccluded region map is DR , then, the quality (Q1) of
the synthesized image in terms of measuring the disoccluded
region can be calculated as follows:

Q1 = 1

K

K�
k=1

2Dr (k) · DR(k) + ε

Dr (k)2 + DR(k)2 + ε
(6)

where k indicates the pixel index, K is the total number of
pixels in an image, and ε is a small positive constant to ensure
the stability. Since the reference image (in an ideal situation)
is free of disoccluded regions, all values in DR are the unit
(with value of 1). Then, Eq. (6) can be rewritten as follows:

Q1 = 1

K

K�
k=1

2Dr (k) · 1 + ε

Dr (k)2 + 1 + ε
(7)

It is clear that the term Dr (k)2 + 1 in the denominator is not
less than 1, indicating that the denominator cannot be zero.
Next, we remove ε and rewrite Eq. (7) as:

Q1 =

Non−disoccluded region� 	
 �
1

K

�
k∈K0

2Dr (k)

Dr (k)2 + 1
+

Disoccluded region� 	
 �
1

K

�
k∈K1

2Dr (k)

Dr (k)2 + 1
(8)
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Fig. 5. Illustration of the stretching region. (a) One typical image contains a stretching region. For convenience, two sub-regions are highlighted by colorful
rectangles. (b) Coarse stretching region map. (c) Average element values of each column in (b).

where K0 and K1 (K = K0 + K1) are pixel sets for
the non-disoccluded and disoccluded regions, respectively.
According to the previous definition (e.g., Eq. (5)), all pixel
values in the non-disoccluded (disoccluded) region are 1 (0).
Hence, Eq. (8) can be further simplified as:

Q1 = 1

K

�
k∈K0

2 · 1

12 + 1
+ 1

K

�
k∈K1

2 · 0

02 + 1

= K0

K

= 1 − K1

K
(9)

From Eq. (9), one can observe that the estimation of Q1 does
not rely on any reference information even though we suppose
a “reference image” aforehand. In this sense, the proposed
method is reference-free. Besides, Eq. (9) reveals another
important information; that is, the area K1 of the disoccluded
region determines the synthesized quality. A larger K1 will
cause a smaller Q1. To ensure that K1 and Q1 are positively
correlated, we further process Q1 as Q1 = 1 − Q1.

B. Stretching Strength Evaluation

Stretching, induced by a failed in-painting operation, mainly
occurs on the left or right side of an image. One typical
example is given in Fig. 5(a). On the left side of Fig. 5(a),
the edges of wall, coat and chair stretch to the left. It is
obvious that the stretching region has the simple texture or
structure with intrinsic differences as compared to natural
images. In this section, we propose a simple but effective
measurement to evaluate the stretching strength.

First, given an image, we calculate its LBP map using
Eqs. (1)−(4). As expected, the stretching region possesses
simple patterns while natural regions exhibit complex patterns.
More specifically, most LBP patterns in the stretching region
have the same value (i.e., 8). Then, we binarize the LBP map
and obtain the coarse stretching region map:

Ds =
�

1, i f �riu2
P = 8

0, otherwi se.
(10)

As can be seen in Fig. 5(b), the outline of stretching region
is primarily drawn by white regions. Whereas, almost all
elements in natural region are zero. With this observation,

the average element value in each column is computed to
detect fine stretching region. As shown in Fig. 5(c), compared
to natural region, the average element values are very high
in stretching region. Moreover, an abrupt decline occurs on
the common boundary between the stretching region and
natural region. With this observation, we finally detect the
fine stretching region with a threshold. More specifically, one
column is involved in stretching region only if its average
element value is larger than T1. It is worth emphasizing that,
as the stretching region only occurs in the left or right side
of an image with a connected area, those qualified columns
which do not connect the left or right side are ignored. In this
study, we empirically set T1 = 0.2.

After capturing the stretching region, our next concern is
how to evaluate its strength, which indicates its impact on
perceptual quality. In Fig. 5(a), two boxes are utilized to label
different stretching sub-regions. Intuitively, the region in the
red box seems to produce less annoyance than that in the green
box although they are in the same stretching width. This may
be attributed to the fact that, compared to the region in the
green box, the region in red box is more similar to its adjacent
natural region, and looks more natural. Therefore, we estimate
the stretching strength by calculating the similarity between
the stretching region and its equal-size adjacent natural region.
The more similar these two regions are, the less the stretching
will be perceptible. Since the human visual system is more
sensitive to structures, we calculate the similarity in gradient
domain. Given a stretching region SI , its gradient magnitude
can be computed as:

Gs =
�

(SI ⊗ px)2 + (SI ⊗ py)2 (11)

where ⊗ is the convolution operation; py and px are filter
kernels in the vertical and horizontal directions, respectively.
In this study, we employ Prewitt filters, which are expressed
below:

py = pT
x , px =

⎡
⎣1/3 0 −1/3

1/3 0 −1/3
1/3 0 −1/3

⎤
⎦ (12)

where symbol T denotes a transpose operation. Using Eq. (11),
we can also obtain the gradient map Gn of the adjacent
equal-size natural region of the stretching region. Then,
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the similarity between them can be estimated as follows:

Sg = 2Gs · Gn + T2

G2
s + G2

n + T2
(13)

where T2 = 0.01 and is used to avoid the problem of division-
by-zero. Finally, the stretching strength is evaluated as the
standard deviation (Q2) of Sg .

Q2 =
���� 1

J

J�
j=1

(Sj − Sg)2 (14)

where J is the element number in Sg ; Sj is the j -th element
in Sg ; Sg is the mean value of Sg . Obviously, a larger Q2
corresponds to a lower perceptual quality.

C. Global Sharpness Evaluation

Apart from the disoccluded region and stretching region,
sharpness is another factor that should not be neglected
in quality assessment of DIBR-synthesized images. In syn-
thesized images, the blurring effect, caused during warping
blur depth map, mainly exhibits around the transitions of
background and foreground. In the literature, many sharpness
measurements have been proposed via analysis of edge and
gradient [48]–[51]. Here, we provide a simple but effective
method to measure the global sharpness of the synthesized
image. The key strategy of the proposed method is the
estimation of inter-scale self-similarity.

It is well known that natural images are scale-invariant,
which indicates that an image shows a similar pixel distribu-
tion and exhibits similar property as its translated, zoom in and
zoom out versions [52]. Suppose that distortions may distort
such characteristics, a sharpness evaluator is designed in this
subsection. Given an image I0, we first obtain its down-scale
version I1 by a downsampling operation with factor 2. Then,
the global sharpness (Q3) of I0 is evaluated via estimating
its self-similarity, that is, measuring the distance of standard
deviations between I0 and I1:

Q3 = 1

N

N�
n=1

�
|δ2

0,n − δ2
1,n| (15)

where N is the total number of non-overlapping image block.
δ2

0,n and δ2
1,n are the standard deviations of the i -th image

block in I0 and I1, respectively. It should be noted that,
during standard deviation calculation, the block size of I1 is
also processed by a downsample operation with factor 2 as
that of I0. It is obvious that, a small value of Q3 denotes a
small difference between I0 and I1, thereby indicating a high
perceptual quality with good sharpness.

D. Perceptual Quality Estimation

With these quality scores of the disoccluded region (Q1),
stretching strength (Q2) and global sharpness (Q3), our next
task is how to effectively pool them together to infer the overall
quality. According to the analysis in Sections III-A−III-C,
all these scores keep monotonous with perceptual quality.
Therefore, we directly integrate them linearly:

Q = α1 · Q1 + α2 · Q2 + α3 · Q3 (16)

Algorithm 1 Proposed Quality Assessment Scheme

where the parameters α1, α2 and α3 (α3 = 1 − α1 − α2) are
employed to balance the relative contribution of each part.
During implementation, we set them as 0.9787, 0.0143 and
0.0070 based on the discussion in Section IV-C. To clarify the
proposed method, the main steps are summarized as follows
(in Algorithm 1).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the experimental
protocol. Then, the effectiveness of the proposed method
is validated through extensive comparisons. Additionally,
the analysis about the achieved performance is conducted.

A. Experimental Protocol

1) Test Platform: In this study, IRCCyN/IVC synthesized
image database is chosen as the test platform [12]. A total
of 84 synthesized images (with size 1024 × 768) are created
from 12 reference images selected from three MVD sequences
in this database. For each reference image, it is processed by
7 different DIBR algorithms (A1−A7). A brief introduction
about A1−A7 is given below.

• A1: the depth map is filtered to eliminate
discontinuities [8]. Borders are cropped and the image
is interpolated to its original size.

• A2: the depth map is also preprocessed as that in A1 [8].
Borders are inpainted as described in [53].

• A3: it is proposed by Mori et al. [54] and is adopted
by the 3D video group as a reference software. It uses the
inpainting method to fill the disoccluded area [53].

• A4: the disoccluded area is filled with the help of depth
information [55]. The depth values surrounding the disoc-
cluded area are examined row-wise to search the background
color samples for filling the disoccluded area.

• A5: the missing part in the virtual view is filled by the
known contents [56].

• A6: based on A5, it also considers the temporal informa-
tion to improve the synthesis in the disoccluded area [57].

• A7: it corresponds to the originally synthesized view
without any postprocessing.

The subjective scores are given in the form of mean opinion
score (MOS) from 21 observers through subjective evaluations
at viewing distance of 6 times the screen height using a
“Pair Comparison” protocol method. Since during subjective
evaluation, the reference images are hidden, in order to use the
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subjective ratings for FR IQA methods, the MOS should be
transformed into difference mean opinion score (DMOS) [14]:

DM OS = 5 + Msyn − Mre f (17)

where Msyn and Mre f denote the MOS values of the synthe-
sized image and its reference image, respectively.

2) Competing Methods: To investigate the effectiveness and
superiority of the proposed method, we compare the proposed
method with numerous recently developed IQA methods.
According to the application, these methods can fall into
two categories. Both categories contain FR metrics and NR
methods. Methods in the first category were designed for 2D
images, including the following:

• SSIM [22], which estimates image quality by combining
the deviations between the distorted image and reference
image in terms of contrast, luminance and structural similari-
ties.

• IW-SSIM [23], which is deviated from SSIM by taking
the information content weight into consideration.

• FSIM [47], which adopts the similar idea of SSIM and
evaluates quality by computing the similarity between the
distorted image and reference image in terms of gradient
magnitude and phase congruency.

• MAD [58], which utilizes two strategies to separately
estimate perceptual distortions in high-quality and low-quality
images.

• ADD-SSIM [19], which changes the pooling measure of
SSIM and designs a pooling model via analysis of distortion
distribution.

• VSNR [59], which considers visual masking, near- and
supra-threshold properties, and visual summation effects in the
wavelet domain to estimate image quality.

• NIQE [60], which builds a model by analyzing a corpus of
high-quality images and evaluates the quality of the distorted
image by computing the distance between its features and the
model.

• IL-NIQE [61], which deviates from NIQE by considering
more features during building the model.

• QAC [62], which estimates image quality using a set of
the learnt quality-aware centroids.

In the second category, six methods that specifically pro-
posed for DIBR-synthesized images are involved, including:

• 3D-SWIM [14], which measures the histogram distance
of Haar wavelet between the reference block and its matched
block in the synthesized view to evaluate the image quality.

• MW-PSNR [27], which decomposes the reference and
synthesized images using the morphological wavelet trans-
form. The quality score is obtained by pooling the multi-scale
wavelet peak to noise ratio across scales.

• MP-PSNR [28], which is similar to MW-PSNR, but
replaces the morphological wavelet by morphological pyra-
mids.

• NIQSV [39], which utilizes morphological operators to
estimate the distortions.

• NIQSV+ [40], which is the extended version of NIQSV
by further considering the stretching distortion.

• APT [10], which takes the free energy model (plus
a threshold) to detect the geometric distortion for quality
assessment.

3) Evaluation Criteria: Three commonly used evaluation
criteria, including the Spearman rank correlation coefficient
(SRCC), Pearson linear correlation coefficient (PLCC) and
Root mean-squared error (RMSE), are employed to evaluate
and compare the proposed method with existing IQA methods
in this study. Among these criteria, PLCC reflects the predic-
tion accuracy, SRCC is computed to represent the prediction
monotonicity, and RMSE evaluates the prediction consistency.
With experience, a smaller value of RMSE, unlike those of
PLCC and SRCC, indicates superior performance of the tested
method. As suggested by the video quality expert group [63],
the estimated score of an objective IQA method should be fed
into a nonlinear regression function before computing PLCC
and RMSE. In this study, we choose the same five-parameter
logistic regression function as the competing methods for
comparison fairness. By definition, it can be expressed as:

f (x) = τ1 ·
�

1

2
− 1

1 + eτ2·(x−τ3)

�
+ τ4 · x + τ5 (18)

where x is the estimated score set of test images by an
objective IQA method. Let x as the input and the DMOS
values as the output of Eq. (18), parameters {τ1, τ2, · · · , τ5}
can be fitted by optimizing the difference between DMOS
values and the fitted scores f (x). With the help of Eq. (18), x
is mapped to f (x), which has the similar magnitude range as
that of DMOS. Therefore, it is fair to make comparisons on
prediction accuracy among different objective methods after
processing their estimated scores by Eq. (18).

4) Implementation Detail: As introduced in Section III,
two parameters, including parameter P used in the LBP
calculation, and local block size B used in the sharpness
evaluation, may have directly affect the overall performance.
In this study, we respectively set them as 8 and 32 × 32 based
on experiments in Section IV-C.

B. Performance Comparison

To ensure the comparison fairness, all these methods are
implemented on the same test environment (Matlab R2016b
software) by running the released or provided codes by the
authors. Comparison results are given in Table I. For reader’s
convenience, we highlight the top two methods with boldface
in each type. From the table, some interesting and meaningful
conclusions can be clearly derived. First, the methods designed
for 2D images are incompetent for evaluating quality of
the synthesized image. Across the considered nine metrics,
MAD obtains the best performance with PLCC = 0.608,
SRCC = 0.599 and RMSE = 0.529. This directly verifies their
incapacity on evaluating the synthesized image and reflects the
necessity of designing specific methods for the synthesized
image. Besides, scrupulous readers may also observe that,
among these methods, FR methods generally exhibit higher
performance than NR methods. This is not difficult to under-
stand as FR methods possess reference information, and thus,
they have more advantages over NR methods. Second, meth-
ods (i.e., designed for the synthesized image) in the second
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TABLE I

PERFORMANCE COMPARISONS. THE TOP TWO RESULTS IN EACH
TYPE ARE HIGHLIGHTED WITH BOLDFACE

category generally outperform those in the first category. This
is because the synthesized image has different distortion types
and existing algorithms in the second category successfully
catch and measure such distortions to some extent. By contrast,
methods for 2D images fail to do this but are capable of
measuring common distortions, like blurriness, blockiness,
contrast change and noise. Third, the proposed method is
superior to all competing FR methods without the help of
reference information. More concretely, our method obtains
approximately 3.6 % dominance of SRCC than the best FR
methods considered (i.e., 3D-SWIM). Last but not the least,
compared to these NR methods, the proposed method still
occupies a dominant position. To be specific, it outperforms
all competing NR methods but leaves a slight gap to the best
metric APT. Despite this, as discussed in the next subsection,
the proposed method has an obvious advantage in implemen-
tation time over APT. Overall, the proposed method exhibits
powerful superiority than all competing methods considered.

For an intuitive comparison, we further give the scatter plots
of the estimated objective scores (these scores are actually
post-processed by Eq. (18)) versus DMOS values, as shown
in Fig. 6. As can be seen, the points of the proposed method
and APT look more monotonic and linear compared with other
competing metrics, and maintain more consistency in line with
subjective feelings. For convenience, the PLCC and SRCC
values of each IQA method are given in the brackets on the
associated caption respectively.

As introduced in Section III, three quality-related distortion
components are comprehensively considered and subsequently
integrated toward the generation of the proposed algorithm.
In this paragraph, another experiment is conducted to inves-
tigate the contribution of each component (i.e., disoccluded
region evaluation, stretching strength and sharpness evalua-
tion) on the final performance. Table II presents the results
of PLCC, SRCC and RMSE. In the table, “Q1”, “Q2” and
“Q3” respectively correspond to the situation that only uses
the score of disoccluded region evaluation, stretching strength
and sharpness evaluation. As expected, all components have

TABLE II

PERFORMANCE OF EACH COMPONENT CONSIDERED

TABLE III

SRCC VALUES OF DIFFERENT DIBR ALGORITHMS (A1−A7)

positive effects on the final performance. Taking Tables I−II
together, it is clear that the performance of each compo-
nent stays at a medium level compared with competing NR
methods. However, the performance, denoted as “Overall”,
is greatly increased when combining these components lin-
early using Eq. (16). In summary, the proposed method obtains
considerable results and has potentials to effectively solve the
IQA problem for synthesized images.

In addition, we also examine the effectiveness of the pro-
posed method on each DIBR algorithm (i.e., A1−A7). For
this purpose, the dataset is first divided into seven parts
according to the processing algorithms of each image. Then,
the perceptual quality scores of all images in each part are
estimated using the proposed method. Finally, the experimental
results are assessed via the SRCC value for each part, as shown
in Table III. It is apparent that the proposed method gets
passable performance on most algorithms, such as A1−A3,
and A6−A7. But simultaneously, it fails to evaluate algorithms
A4 and A5. This may be attributed to A4 and A5 filling
the disoccluded regions with depth or texture information,
which unexpectedly produces blurry around these disoccluded
regions. Since our method places more effort on detecting
and evaluating the disoccluded region, stretching region and
sharpness, it unfortunately exposes its insufficient ability to
evaluate quality of images processed by algorithms A4 and
A5. Besides, as shown in Fig. 1, multiple distortion types
may be involved in one image. However, most existing metrics
(e.g., NIQSV, APT as well as the proposed method) merely
consider some of distortion types, they accordingly achieve
limited overall performance and retain bias on different DIBR
algorithms. In spite of this, our method selectively chooses
some more significant distortion types and obtains an encour-
aging performance with enviable superiority. This motivates
us to insistently move forward towards completely solving this
challenge.

It is clear that APT and proposed method lead to the NR
methods. In this paragraph, we further investigate whether
these two leading methods can be combined to generate a
more effective NR method. Specifically, the combined method
is defined as follows:

Qc = β1 · Q + β2 · APT (19)
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Fig. 6. Scatter plots of the estimated objective scores vs. DMOS values. Since we pay more attention on comparisons with NR methods, only partial FR
methods are involved here. For convenience, the name of each objective method is given in the caption of the associated subfigure. Meanwhile, the PLCC and
SRCC values are given in the brackets respectively. (a) MP-PSNR [28], (0.617,0.623). (b) MW-PSNR [27], (0.562,0.576). (c) ADD-SSIM [19], (0.551,0.467).
(d) SSIM [22], (0.485,0.437). (e) MAD [58], (0.608,0.599). (f) IL-NIQE [61], (0.494,0.526). (g) NIQE [60], (0.437,0.374). (h) QAC [62], (0.352,0.311).
(i) NIQSV [39], (0.643,0.483). (j) NIQSV+ [40], (0.654,0.490). (k) APT [10], (0.731,0.716). (l) Proposed, (0.675,0.652).

where β1 and β2 are weighting parameters to linearly combine
the proposed method and APT. Fig. 7 illustrates the SRCC
values of the combined method with different β1 and β2
settings. It is observed that the combined method obtains
the best result (SRCC = 0.726) when β1 and β2 are set as
0.6×10−3 and 323.5, respectively. Meanwhile, we can obtain
PLCC = 0.764 with this parameter setting. By comparing the
results in Table I, one can find that the combined method
is superior to all NR methods. More concretely, it brings
approximately 3% and 1% performance gains of PLCC and
SRCC, respectively, compared to the most effective method
APT. With this observation, we can selectively choose different
methods according to different practical NR applications. If an
application focuses more on effectiveness, one can choose the
combined method. Whereas, the proposed method should be
selected when the efficiency is necessary.

C. Parameters Sensitivity

In this subsection, we investigate the impacts of parameters
on experimental results. Totally, two parameters are consid-
ered, i.e., parameter P used in LBP calculation and local
block size B used in sharpness evaluation. Here, we explore
their impacts separately. One parameter should be fixed when
another parameter’s impact is explored. First, we set B as

Fig. 7. The impact of parameters (β1 and β2 used in Eq. (19)) on the
performance of the combined method.

32 × 32 and choose a P value from {4, 8, 16} in a sequen-
tial order. Fig. 8(a) depicts the performance under different
arrangements. Clearly, parameter P has slight influence on
the overall performance. To be specific, when P = 8 and
P = 16, the associated results are similar and superior to the
case of P = 4. This phenomenon is possibly attributed to
that only considering the surrounding 4 pixels is not enough
for reflecting local similarity. As the considered surrounding
pixels increase, the local similarity seems to be well reflected
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Fig. 8. The impact of parameters on the overall performance. (a) SRCC vs.
P , (b) SRCC vs. B .

Fig. 9. Impact of parameters (α1 and α2 used in Eq. (16)) on the performance
of the proposed method.

and the performance tends to be stable when P hovers between
8 and 16. Since the increase in surrounding pixels burdens the
computational cost, parameter P is arranged as 8 in this study.
Next, we fix P = 8 and change B from 64 × 64, 32 × 32 to
16 × 16. As illustrated in Fig. 8(b), the block size B does
not affect the result too much. Therefore, we set it as 32 ×
32 due to its slight advantage on performance.

It is worth noting that α1, α2 and α3 in Eq. (19) also have
direct influence on the overall performance. To avoid their
influence, they are chosen during the value selection of P
and B for achieving the best performance. For example, let
P = 8 and B = 32 ×32. α1 ranges from 0.01 to 0.02 in steps
of 0.0003 and α2 ranges from 0.9 to 1 in steps of 0.0003. Once
they are chosen, α3 is determined by α3 = 1 −α1 −α2. Fig. 9
shows the SRCC values under different α1 and α2 settings.
By observation, we find that the proposed method obtains the
best result (SRCC = 0.652) when α1 = 0.9787 and α2 =
0.0143. Actually, the above parameter selection procedure is
conducted for every P and B combination. Finally, we set
α1 = 0.9787, α2 = 0.0143, P = 8 and B = 32 × 32 for
achieving the best performance of the proposed method.

D. Implementation Time

Apart from effectiveness, implementation time is another
concerned factor during designing IQA methods. In fact,
a time-saving method is more favored and welcomed. Here,
we also conduct an experiment to investigate the implemen-
tation time of the proposed method and compare it with

TABLE IV

RUN TIME COMPARISON AMONG DIFFERENT NR METHODS (IN SECONDS)

competing NR methods. To avoid inadvertently mistakes, all
methods are implemented on the same test platform (MAT-
LAB R2016b software executed on a 3.2 GHz processor
with 16 GB RAM, Windows 7 Pro 64-bit desktop). For each
method, the total time consumed is recorded by functions
(tic and toc) on the entire IRCCyN/IVC image database.
Table IV summaries the processing time per image (in sec-
onds) of seven NR methods. It can be intuitively observed
that most methods except APT are time-saving and fast to
implement (with less than 0.5s for processing an image).
More especially, the proposed method only requires about
0.2s. In contrast, APT requiring autoregression procedure is
time-consuming and costs more than hundreds of times than
these time-saving methods. Taking the results in Table I into
account together, it seems that there is a tradeoff between the
effectiveness and implementation time. To be specific, these
competing methods perform well on either effectiveness or
implementation time, but none of them considers these two
elements simultaneously. By contrast, the proposed method
obtains considering performance (is slightly inferior to APT)
and requires shorter implementation time (is slightly inferior
to NIQSV and NIQSV+). In other words, the proposed
method well balances the effectiveness and implementation
time, therefore, it may have more potentials than competing
methods.

E. Discussion

The MVD format together with DIBR algorithms provide
us a new solution for reducing data amount of FVV dur-
ing transmission and storage. Proposing quality assessment
method for DIBR-synthesized images is fundamental and
critical for proposing a perceptual friendly FVV system. In this
study, we have designed a novel quality assessment method
for DIBR-synthesized images. Through several experiments,
it is shown that the proposed method exhibits considerable
performance in terms of effectiveness and implementation
time. To be specific, it is better than all competing FR methods
and is slightly inferior to the state-of-the-art NR method APT
in terms of effectiveness. Meanwhile, the proposed method is
time-saving and only leaves a small gap (about 0.1s) to the
fastest method NIQSV. More importantly, it requires obviously
shorter implementation time than the most effective method
APT. Specifically, only 0.196s is used by the proposed method
while more than 90s is used by APT for processing an image.
Overall, as revealed in Table I and Table IV, further works
still require for performance improvement. For example, more
efforts can be paid on effectiveness improvement by consid-
ering and quantifying more DIBR-related distortions, such
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as object shifting, blurry and crumbling. Meanwhile, other
measures (such as variation, entropy and moment statistics of
pixels in local region) can also be utilized to assist the pro-
posed solution in analyzing the local similarity for estimating
the disocculded region, stretching, etc. It is worth noting that,
time-saving features should be preferentially considered to
supplement currently used features for improving effectiveness
or replace currently used features for reducing implementation
time. Apart from improving performance, another issue should
be addressed is how to extend the proposed method for
evaluating the quality of entire DIBR-synthesized FVVs in
the future work. For this purpose, the visual angle, binocular
perception model and the temporal distortion (e.g., flickering)
should be taken into account.

V. CONCLUSION

In this paper, we make an attempt to estimate the qual-
ity of DIBR-synthesized images without requiring reference
information. The proposed method mainly considers three
DIBR-related distortions, i.e., disoccluded region, stretching
and global sharpness. Specifically, a local similarity analysis
is first used to detect disoccluded regions. Then, the stretch-
ing region is determined via the analysis of local similarity
map followed by a threshold. Next, the global sharpness is
evaluated by measuring inter-scale self-similarity. At the end,
these three components are measured separately and combined
linearly to infer the overall perceptual quality. Extensive exper-
iments on the IRCCyN/IVC database prove the superiority of
the proposed method. More concretely, it obtains considerable
performance (PLCC = 0.675, SRCC = 0.652 and RMSE
= 0.462) and outmatches the mainstream FR IQA methods.
Besides, compared to those NR methods, it is merely inferior
to APT and occupies the second place. However, our method
is more time-saving (only requiring 0.196s to process an
image) and therefore possesses more application potentials
than APT. Moreover, by combining the proposed method and
APT together, we can produce a more effective method. This
gives us broader choices for coping with different practical
NR applications.

APPENDIX

For reader’s convenience, we list the abbreviations used in
this paper as below.
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